TECHNICAL INSIGHTS

SENSOR

TECHNOLOGY ALERT

- **1. MULTIPURPOSE SENSOR FOR MONITORING HOME ENVIRONMENT**
- 2. WEARABLE DEVICE FOR MONITORING ALCOHOL CONSUMPTION
- 3. DETECTING EXPLOSIVES WITH TINY SENSORS
- 4. RECENT PATENTS IN THE FIELD OF FLOW SENSORS AND APPARATUS

1. MULTIPURPOSE SENSOR FOR MONITORING HOME ENVIRONMENT

Devices providing updates about home environments and connecting to the user through his/her phone are in demand these days. There are some companies, such as Philips and Nest (the Nest programmable thermostat) that are coming up with devices which will provide updates on house conditions. There are sensors in the market which will provide alerts on changes in the house environment. However, these sensors are focused on simple and single tasks. Temperature sensors will sense the temperature in the room and update a user on the conditions so that he/she can turn on his air conditioner. Users need to place different sensors for getting an update about different tasks. As placing different sensors will increase the cost for users, there is a need for a cost-efficient, tiny, multipurpose, and user friendly device.

To address the above challenge, researchers from a Poland-based company Clime Sense have developed a multipurpose sensor called Clime. Clime is designed to measure different environmental conditions. Clime is comprised of ambient light, temperature, movement and humidity sensors. Clime communicates with the user through an embedded Bluetooth device.

Clime is integrated with four different sensors. The temperature sensor is employed to measure temperature. Clime is a very small device and can be placed on various places very easily such as on house windows. Clime may also be placed inside the refrigerator to measure temperature. A movement sensor is deployed to detect the motion of an object or people. The Clime sensor can be used to measure the total cycles in the washing machine. Humidity sensing is used to determine moisture content in gases, air and bulk solids, such as grain, flour and so on. The Clime sensor placed on the window of the house will provide information, such as temperature, light and humidity inside the room. It will guide the user to open or close the windows. Bluetooth low energy (LE) communication creates a wireless environment by sending data to the users on their smart phones or tablets. Thus, the Clime sensor serves as a multipurpose sensor to create affordable home automation.

Clime sensors will be used in the house to measure humidity, temperature, light and movement. The Clime sensor is a low-cost sensor which can create an automated house environment. Before commercializing a Clime sensor, researchers are planning to add three new sensing elements to the product, such as light color sensor, carbon dioxide sensing and barometric pressure. The Clime sensor is relayed with phones and tablets which are Bluetooth enabled. Clime will provide an update about the change in environmental conditions and provide visualization about the home activity. Clime sensors are small in size, cost efficient and user friendly.

This project was self-funded by the founders of the company. Researchers are planning to create actuators and synchronize them with sensors. Synchronizing actuators with the sensor will help a user to control systems such as automatically opening or closing a window based on changes in the environment. The Clime sensor is expected to be commercialized by 2014. It has the potential to be well received by users due to its long battery life and the ease of use feature.

Details: Zimny Bart, Cofounder, Clime Sense, Krakow, Poland. Phone: +48-509-792-073. E-mail: zimnybart@gmail.com. URL: http://www.climesense.com.

2. WEARABLE DEVICE FOR MONITORING ALCOHOL CONSUMPTION

Several accidents and even deaths are caused due to excess alcohol consumption. Hence, there is a need for a technology that can monitor alcohol consumption and generate alerts when the alcohol consumption level of a user crosses a safe limit or when the user needs medical attention.

To address the above need, researchers from the University of Washington have developed a wristband with integrated sensors called Vive. Vive can be worn individually by a group of people at parties or other events involving alcohol consumption. Vive connects all the users of the group via social networks such as facebookand monitors each user's alcohol consumption, and sends alerts to the other members in the group via Bluetooth if it senses that the user is at risk or needs medical attention.

The Vive wearable wristband is comprised of a transdermal alcohol sensor, a gyroscope, accelerometer, dehydration sensor, and Bluetooth. The Vive transdermal alcohol sensor monitors the level of ethanol excreted from the skin of the user. The dehydration sensor monitors the dehydration level of the user. If the person's alcohol content or dehydration level is at dangerous levels, the device alerts the other members in the group.

The band keeps sending small vibrations to the user at regular intervals and the intervals decrease with the increasing inebriation levels of the user. If the user acknowledges the vibration by briefly squeezing the band within a stipulated time, the band does not act and sends the next vibration after an interval. If the user does not acknowledge the vibration, the Vive device alerts the other people in the user's group connected with the user via Bluetooth.

The gyroscope and accelerometer sense motion of the user and activate an alert if there is lack of motion; for example, if the user has lost consciousness, the sensor will alert other users in the group. Vive monitors and updates the user about alcohol consumption status by a simple vibration.

Vive can be used in events involving alcohol consumption for keeping users safe and connected from the start of the event till the end. It can monitor alcohol consumption by the users and alert the other users in the group in case of emergencies.

This project was funded by the University of Washington. The researchers of the wristband are working on making the triangulation process effective. Using GPS (global positioning system) or wireless network triangulation, a user can track the location of other users. The researchers also plan to work on reducing the size of the transdermal alcohol sensor, which is currently bulky.

Details: Kristina Colleen, Team Member, Vive, University of Washington, Seattle, WA. Phone: 206-817-7512. E-mail: kmcolleen@gmail.com. URL: http://www.washington.edu/

3. DETECTING EXPLOSIVES WITH TINY SENSORS

To ensure security of civilians and defense personnel, it is important to detect traces of explosives efficiently and reliably. There are some devices available in the market to detect these explosives, such as ion mobility spectrometers (IMS). However, IMS devices have challenges detecting low vapor pressure explosives, and conventional explosive detectors are susceptible to false alarms. Pentaerythritol tetranitrate (PETN) is considered a favorite among terrorists because it is made up of a plastic body and is very hard to detect. Sniffer dogs can be deployed to sniff the explosives, but they may not be completely reliable. There is a need for a device which can trace minute airborne molecules of explosives. The device should be easy to place, should have good efficiency in tracing the explosives as well as cost efficient.

To address the above challenge, researchers from the University of California, Berkeley, have developed a plasmon laser detector. This plasmon laser detector, which comprises a tiny sensor, can trace minute concentrations of explosives.

The plasmon laser sensor is very small in size compared to other explosive detectors available in the market. It is deployed to detect the airborne molecules of explosives. The plasmon laser sensor operates below the visible light diffraction and is free from metal losses. This loss compensation within metals leads to a sharp emission of the ultrasensitive laser to absorb molecules. The plasmon laser sensor is covered with a layer of cadmium sulfide because of its optoelectronic properties, such as light energy absorption. A semiconductor is placed on the silver sheet and it is coated with a layer of magnesium fluoride. This apparatus works as a reflector to compensate for light leakage. The reflector allows the light to bounce back and forth inside the sensor. The sensing mechanism of the Plasmon laser sensor detects shifts or changes in the wavelength of light. The plasmon laser sensor creates a sharp signal to detect any changes for even minute traces of explosives. It will be able to detect tiny airborne molecules of explosives.

The plasmon laser sensor will be used to detect Dinotrotoluene (DNT), ammonium nitrate, Trinitrotoluene (TNT) explosives, pentaerythritol tetranitrate (PETN) and nitrobenzene. The plasmon sensors can detect DNT at concentrations of 0.67 parts per billion. Such sensors could be used in airports, train stations, and public places, such as schools and hospitals to detect terrorist threats.

Work on the plasmon laser sensor was funded by the US Air Force Office of Scientific Research. The researchers have noted the sensor could have applications in areas, such as biomolecular research. Details: Xiang Zhang, Professor, Mechanical Engineering, University of California, Berkeley, 5130 Etcheverry Hall, Mailstop 1740, University of California, Berkeley, Berkeley, CA 94720-1740, Phone: 510-643-4978, E-mail: xzhang@me.berkeley.edu, URL: http://www.berkeley.edu.

4. RECENT PATENTS IN THE FIELD OF FLOW SENSORS AND APPARATUS

Liquids and gases are used in processing plants. Coolants and lubricants are supplied for plants and machines. If there is an error in the flow of liquid or gases, it will considerably affect the end product. Thus, it is important to monitor the flow of liquids and gases.

Liquid or gas flow is defined as the volume per unit time or area per unit time at which liquids or gases travel through a given segment and it can be categorized at specific pressures and temperatures. Often, a flow sensor element is used in a flow meter or flow logger for fluid flow measurement. Fluid flow sensors can monitor media, such as irrigation systems, water recycling for home application, storage tanks, and water conservation systems.

Key types of flow sensing or metering technologies include differential pressure, positive displacement, vortex, thermal mass, ultrasonic, turbine, vortex, Coriolis, ultrasonic.

A recent patent in flow sensing involves the incorporation of a substrate supporting a piezoelectric element. The free end of the substrate undergoes vibrations by gas flow. This flexes the substrate and the piezoelectric element, providing an alternating output to a microprocessor with an amplitude dependent on the gas flow rate. The assignee for the flow sensor with Patent no WO/2014/108658 is Smiths Medical International Limited.

PATENT TITLE	PUBLICATION	ASSIGNEE	INVEN	FORS	ABSTRACT
	DATE / NUMBER				
FLOW	17.07.2014;	SMITHS	ADAMS,	Grant	A gas flow sensor (1), such as for a respiratory tube
SENSORS AND	WO/2014/10865	MEDICAL	Alan		(120) or a convective warming blanket (40), includes
APPARATUS	8	INTERNATIO			a stiff, flexible rectangular substrate (10) supporting
		NAL LIMITED			a piezoelectric element (11). The substrate (10) is
					mounted at its downstream end (15) and aligned in
					the gas flow (2) so that its free end (16) is vibrated
					up and down by gas flow. This flexes the substrate
					(10) and the piezoelectric element (11) so that it
					provides an alternating output to a processor (20)

				with an amplitude dependent on the rate of gas flow. The processor (20) provides an output to a display (3) indicative of the gas flow rate.
DEVICE FOR DETERMINING A POSITION OF A ROTOR OF A POLYPHASE ELECTRIC MOTOR	17.07.2014; WO/2014/10874 6	FREESCALE SEMICONDU CTOR, INC.	LOVAS, Ivan	A device (1) is for determining a rotor position in a polyphase electric motor having a first phase, a second phase and a third phase. A power control unit (3) applies a first voltage on the first phase, and a second voltage on the second phase, the first voltage and the second voltage being periodic signals of opposite polarity, alternating between a first part and a second part of the alternating period, such as square waves. A sample unit (4) samples a third voltage on the third phase for acquiring a first sample at a first instant in the first part and a second sample at a second instant in the second part, and a difference value between the first sample and the second sample. The difference value represents a mutual inductance between the stator coils due to the rotor position. Finally, a determination unit (5) determines the rotor position based on the difference value.
PROTECTION ASSEMBLY FOR DOWNHOLE WET CONNECTORS	17.07.2014; WO/2014/10975 3	HALLIBURTO N ENERGY SERVICES, INC.	RICHARDS, William M.	The invention addresses protecting the free ends of communication lines from debris during downhole wet-mate connection in a wellbore, with protection of the lines upon disconnection as well. A reciprocating debris exclusion device is provided for use with upper and lower tools to be connected. The lower tool has a reciprocating cover member mounted for sliding engagement with the housing of the lower tool, the cover member shielding the free end of a communication line. An upper tool has a bladder-type cover member attached to the upper tool and protecting the free end of a communication line. The reciprocating cover member is moveable between a closed and an open position and is moved in response to contact with the upper tool. The bladder cover is movable between closed and open positions and is moved to the open position by contact with the reciprocating cover member of the lower tool.

				•
METHOD AND SYSTEM FOR TARGETING DELIVERY OF VIDEO MEDIA TO A USER	17.07.2014; WO/2014/10819 5	TELEFONAKT IEBOLAGET L M ERICSSON (PUBL)	HUBER, Michael	A method for targeting delivery of video media to a user is disclosed. The method comprises the steps of displaying a video segment to a user via a user equipment (step 10), determining a reaction of the user to the video segment (step 120), inferring user interests from the user's reaction to the video segment (step 130), and selecting a video segment for future display according to the inferred user interests (step 140). Also disclosed are a computer program product and system for targeting delivery of video media to a user.
VOLTAGE	17.07.2014:	AKTIEBOLAG	BARTL, Frank	An arrangement (111,211) for voltage adjustment for
	WO/2014/10820	FT SKE		an energy harvester (101 201) comprises; a first
FOR AN	5			input terminal (131 231) and a second input terminal
	5			(133 233) adapted to receive a AC voltage
HARVESTER				therebetween the AC voltage having an input
HARVESTER				magnitude the AC voltage being supplied at an
				inductance $(107, 207)$: a switch module $(135, 235)$
				connected between the first input terminal (131,231)
				and the second input terminal (122,222) for
				and the second input terminal (155,255) for
				the second input terminal with
				the second input terminal; and a controller (127)
				adapted to receive an input signal (129,229)
				Indicative of the input magnitude of the voltage, and
				to control the switch module (135,235) to operate
				selectively in a first mode (121) or a second mode
				(125) depending on the input magnitude, in order to
				adjust the voltage to have an output magnitude in a
				predetermined range.
CBCT AND X-	17.07.2014;	BRAINLAB	BERLINGER,	The invention is directed to a data processing method
RAY COMBINED	<u>WO/2014/10817</u>	AG	Kajetan	for determining the consistency of registration of the
SETUP WITH X-	<u>4</u>			position of a treatment body part to be treated by
RAY				radiotherapy with a treatment beam arrangement of
VERIFICATION				at least one position of a treatment beam issued by a
OF PATIENT				treatment device, the treatment body part being a
POSITIONING				soft tissue part of an anatomical structure of a
				patient's body and the data processing method being
				constituted to be executed by a computer and
				comprising the following steps: g) acquiring CT data

		comprising predetermined CT information about a
		position of the treatment body part relative to a bony
		structure of the patient's body and about a first
		position of the bony structure relative to the
		treatment beam arrangement; h) acquiring x-ray data
		comprising x-ray information about a second position
		of the bony structure relative to the treatment beam
		arrangement; i) determining, based on the x-ray data
		and the CT data, bony structure position first
		transformation data comprising bony structure
		position first transformation information about a first
		transformation between the first position and the
		second position of the bony structure; j) acquiring
		CBCT data comprising CBCT information about the
		position of the treatment body part relative to the
		treatment beam arrangement or relative to the bony
		structure; k) determining, based on the CBCT data
		and the CT data, bony structure position second
		transformation data comprising bony structure
		position second transformation information about a
		second transformation between the first position and
		a third position of the bony structure relative to the
		treatment beam arrangement; determining, based on
		the bony structure position first transformation data
		and the bony structure position second
		transformation data, transformation difference data
		comprising transformation difference information
		about a difference between the first and second
		transformations.

APPARATUS	17.07.2014;	TELEFONAKT	HUBER, Michael	A method for controlling adaptive streaming of media
AND METHOD	WO/2014/10819	IEBOLAGET L		comprising video content is disclosed. The method
FOR	4	M ERICSSON		comprises the steps of managing a quality
CONTROLLING		(publ)		representation of the video content according to
ADAPTIVE				available resources (step 120), detecting user
STREAMING OF				engagement with the video content (step 130) and
MEDIA				checking for continued user engagement with the
				video content (step 140). The method further
				comprises the step of reducing the quality
				representation of the video content on identifying an
				interruption of user engagement with the video
				content (step 150). Also disclosed are a computer
				program product for carrying out a method of
				controlling adaptive streaming of media comprising
				video content and a system (200) configured to
				control adaptive streaming of media comprising video
				content.

Exhibit 1 lists some of the patents related to flow sensing.

Picture Credit: Frost & Sullivan

Back to TOC

To find out more about Technical Insights and our Alerts, Newsletters, and Research Services, access <u>http://ti.frost.com/</u>

To comment on these articles, write to us at <u>tiresearch@frost.com</u>

You can call us at: **North America**: +1-843.795.8059, **London**: +44 207 343 8352, **Chennai**: +91-44-42005820, **Singapore**: +65.6890.0275